Pearson

Mark Scheme (Results)

January 2017

Pearson Edexcel
International Advanced Subsidiary Level
in Chemistry (WCH04)
Paper 01 General Principles of Chemistry I - Rates,
Equilibria and
Further Organic Chemistry
(including synoptic assessment)

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everyw here
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 1701
Publications Code WCH04_1701_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark	
1	A	Unit should be $\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ divided by $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	1
	B	Correct	
	C	Unit is not $(\mathrm{mol} \mathrm{dm}$	
	D	Unit is not $\left(\mathrm{sol} \mathrm{dm}^{-3}\right)$ divided by $\left(\mathrm{sol} \mathrm{dm}^{-3}\right)$ divided by $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	

| Question
 Number | Correct Answer | Mark |
| :--- | :--- | :--- | :--- |
| 2 | ARate decreases by factor of 4 when [NO] is halved and
 increases by factor of 2 when [Br_{2}] is doubled so overall
 decreases by factor of 2/ is halved | 1 |
| | BRate is not doubled
 C
 Correct
 Rate is not quartered | |

Question Number	Correct Answer		Mark
3	A	k is not directly proportional to temperature	1
	B	k does not decrease as temperature increases	C
	D	Correct	
k increases exponentially, not as shown			

| Question
 Number | Correct Answer | Mark |
| :--- | :--- | :--- | :--- |
| 4 | The temperature drops so it is true that ΔH is positive
 B Correct
 A gas is formed so it is true that $\Delta S_{\text {system }}$ is positive
 D
 The reaction is spontaneous so it is true that Δ Sotal $^{\text {is }}$
 positive | 1 |

| Question
 Number | Correct Answer | Mark |
| :--- | :--- | :--- | :--- |
| 5 | AThe entropy of the system increases when more gas
 molecules form
 The entropy of the system increases when a gas forms
 from a solid | 1 |
| Correct
 The entropy of the system increases when solid turns to
 liquid | | |

Question Number	Correct Answer	Mark
6	AThe enthalpy change for the equation shown is equivalent to providing the energy to form gaseous sodium and chloride ions (- Lattice energy) and then hydrating the ions (+ hydration energy) so sign of Lattice energy is incorrect	1
	BSign of enthalpy change of hydration is incorrect C Sign of enthalpy change of hydration is incorrect Correct	

| Question
 Number | Correct Answer | Mark |
| :--- | :--- | :--- | :--- |
| 7 | AThe level of solubility is not the cause of the enthalpy
 change | 1 |
| The statement is true but does not explain the enthalpy
 change
 The enthalpy change of hydration does not depend on the
 lattice energy
 Correct | | |

$\left.\begin{array}{|l|ll|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline 8 & \text { A } & \begin{array}{l}\text { The pressure of solids should not be included } \\ \text { B }\end{array} & \begin{array}{l}\text { The pressure of solids should not be included }\end{array} \\ & \text { C } & \text { Correct } \\ \text { D } & \text { The expression is upside down }\end{array}\right]$

Question Number	Correct Answer	Mark	
9	A	Correct B On warming more acid will dissociate so the pH will drop On warming more acid will dissociate so $[\mathrm{HCOOH}]$ will decrease On warming more acid will dissociate forming more methanoate ions	1

Question Number	Correct Answer	Mark	
10	A	The more concentrated NaOH will have a higher pH	1
	B	Correct	
	C	Ammonia is a weaker base than NaOH so pH will be lower	
	D Ammonia is a weaker base than NaOH so pH will be lower		

| Question
 Number | Correct Answer | Mark |
| :--- | :--- | :--- | :--- |
| 11 | Correct
 B Weak acid/ strong base needs an indicator with a higher
 pH range
 CWeak acid/ weak base would not show a sharp change at
 pH 3.8 to 5.4
 Not an acid/ base titration | 1 |

Question Number	Correct Answer	Mark	
12	A	Nitric acid is a proton acceptor here The HSO4 ion is a proton acceptor here	1
	B	These are both proton acceptors Correct	
	D		

Question Number	Correct Answer	Mark	
13	A	SN 2 means bi-molecular, not two step	1
	B	Correct	A racemic mixture would form via a planar intermediate in
	D		
	$S_{N} 1$, not in $S_{N} 2$ A transition state, not a planar intermediate, forms in $S_{N} 2$		

Question Number	Correct Answer	Mark	
14	A	Ammonium ethanoate would form	1
	B	Correct	
	C	The product is a cyanohydrin not ethanamide	
	D	Ethanamide would not form	

Question Number	Correct Answer	Mark	
15	A	The acid needed is propanoic acid and the alcohol is 3- methylbutan-2-ol	1
	B	The alcohol needed is 3-methylbutan-2-ol C	The acid needed is propanoic acid Correct

Question Number	Correct Answer	Mark	
16	A	Propanone cannot be oxidised to an acid	1
	B	Reduction of propanal would form an alcohol	
	C	Correct	
D	The acid produced would be methanoic		

Question Number	Correct Answer	Mark	
17	A	Correct	1
	B	Both compounds contain C-C and C-H bonds only	
	C	Both compounds contain C-C ,C-H, C-O and O-H bonds only	
	D	Both compounds contain C-C, C-H, C-O and C=O bonds only	

Question Number	Correct Answer	Mark	
18	A	It is carried out at temperatures where samples have been vaporised	
	B	It cannot be used if the samples have decomposed	
C	It a cannot be used if the samples cannot be vaporised		
Correct			

Question Number		Correct Answer	Mark
19	A	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}$ would have mass 61 with these isotopes $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}$ would have mass 65 with these isotopes $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}$ would have mass 65 with these isotopes Correct	1

Question Number	Correct Answer	Mark	
20	A	Correct	1
	B	No peak at $1700-1680 \mathrm{~cm}^{-1}$ for a ketone	
C	No peak at $3750-3200 \mathrm{~cm}^{-1}$ for an alcohol		
Alkane would not have a peak at $1750 \mathrm{~cm}^{-1}$			

Section B

Question Number	Acceptable Answers	Reject	Mark
21a(i)	(Concentration of) $\mathrm{NaOH} / \mathrm{OH}^{-}$remains (almost) constant OR $\mathrm{NaOH} / \mathrm{OH}^{-}$is in excess, so it does not limit rate OR Only the concentration of CV^{+}changes significantly OR change in rate is dependent only on the change in CV^{+} IGNORE references to excess / increasing reliability / ensuring rate is suitable		1

Question Number	Acceptable Answers	Reject	Mark
$21 \mathrm{a}(\mathrm{ii})$	Colorimetry / (use of) colorimeter	Calorimetry, pH measurement, conductivity, sampling, titration, quenching	1
	ALLOW Spectrophotometry Measurement of light absorbed Recognisable but incorrect spelling		

Question Number	Acceptable Answers	Reject	Mark

| 21a(iv) | First order | (1) | If zero order or
 second order given
 then (0) marks |
| :--- | :--- | :---: | :--- | :--- |
| As half-life is constant
 ALLOW
 As half-life is similar | 2 | | |

Question Number	Acceptable Answers	Reject	Mark
$21 \mathrm{~b}(\mathrm{i})$	$1 / \mathrm{T}=3.37 \times 10^{-3} / 0.00337$ and $\ln k=-4.84$	$1 / \mathrm{T}=3.36 \times 10^{-3}$ $\ln k=-4.83$ Any answer not to 3 sf	1

	Gradient: 2 marks.		
This may be shown on the graph Gradient in the range -6000 to -6400 (K) IGNORE unit	(1)		
Negative sign (as long as a value has been calculated) Value (1)			
ALLOW Gradient calculated from data in table TE on incorrect plotting	given as a fraction		

Question Number	Acceptable Answers	Reject	Mark
21b(iii)	$\begin{aligned} & E_{\mathrm{a}}=-(8.31 \times-6270=(+) 52104) \\ & =(+) 52 \mathrm{~kJ} \mathrm{~mol}^{-1} / \\ & (+) 52000 \mathrm{~J} \mathrm{~mol}^{-1} / 5.2 \times 10^{4} \mathrm{~J} \mathrm{~mol}^{-1} \end{aligned}$ MP1 Use of $R \mathrm{x}$ gradient MP2 Value to 2 sf and matching unit TE from 21b(ii) ALLOW $\mathrm{kJ} / \mathrm{mol}$ Ea will be from +50 to +53 for gradients of -6000 to -6400	kJ for $\mathrm{kJ} \mathrm{mol}^{-1}$ J for $\mathrm{J} \mathrm{mol}^{-1}$	2

Question Number	Acceptable Answers	Reject	Mark
22(a)	Reagent: 2,4-dinitrophenylhydrazine ALLOW Brady's reagent / 2,4-DNP(H) Formula: $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2} \mathrm{NHNH}_{2}$ or with ring displayed (1)	Dinitrile for dinitro	2
Result: yellow / orange / red AND precipitate / (1) ppt / ppte / solid / crystals			
ALLOW combinations of these colours e.g. orange- red, but NOT red-brown No TE on incorrect reagent			

Question Number	Acceptable Answers	Reject	Mark
22(b)	Reagent: iodine and sodium hydroxide OR iodine in the presence of alkali OR iodine and hydroxide ions OR sodium chlorate(I) and potassium iodide Result: (pale) yellow precipitate / solid / crystals ALLOW medicinal / antiseptic smell (with P only) Identity: triiodomethane / iodoform / CHI_{3} ALLOW correct displayed formula IGNORE additional organic product, even if incorrect Only allow TE if "iodoform test" or "iodine" given as reagent	$\mathrm{CH}_{3} \mathrm{I}$	3

Question Number	Acceptable Answers	Reject	Mark
22(c)	3-methylbutan-2-ol / 3-methyl-2-butanol ALLOW 2-methylbutan-3-ol / 2-methyl-3-butanol IGNORE formula	Pentan-1-ol Pentan-2-ol	1

Question	Acceptable Answers				Reject	Mark
22d		P	Q			4
	Number of peaks in low resolution nmr spectrum	3	2	(1)		
	Number of H atoms producing peak with greatest area in low resolution nmr spectrum	6	6	(1)		
	Splitting pattern of peak with greatest area in high resolution nmr spectrum	Doublet (1) ALLOW Duplet 2 (lines)	Triplet (1) ALLOW 3 (lines)			

Question Number	Acceptable Answers	Reject	Mark
22e(ii)	any named strong acid e.g. $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{SO}_{4}$ Or any named strong alkali $/ \mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-}$ followed by an acid IGNORE water ($\mathrm{eg} \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$) IGNORE reference to dilute / concentrated IGNORE just "dilute acid" / $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$	Named weak acid e.g. ethanoic acid alkali and acid added at the same time	1

Question Number	Acceptable Answers	Reject	Mark
22e(iii)	Displayed COO linkage between units Rest of structure including extension bonds ALLOW $\mathrm{C}_{2} \mathrm{H}_{5}$ for $\mathrm{CH}_{2} \mathrm{CH}_{3}$ COO at one end and no O at the other IGNORE Square brackets and subscript n	Bond to CH_{3} of the ethyl group Extra O at end	2

(Total for Question 22 = $\mathbf{1 7}$ marks)

Question Number	Acceptable Answers	Reject	Mark
23a	2-hydroxypropanoic acid	Just "2-hydroxypropanoic"	1

Question Number	Acceptable Answers	Reject	Mark
23b	MP1 Organic product with one OH substituted by Cl $\mathrm{CH}_{3} \mathrm{CHClCOOH}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COCl}$ Can be displayed. MP2 Second OH substituted $\mathrm{CH}_{3} \mathrm{CHClCOCl}$ MP3 POCl_{3} and HCl as products in balanced equation $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+2 \mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCOCl}+2 \mathrm{POCl}_{3}+2 \mathrm{HCl} \tag{1} \end{equation*}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+2 \mathrm{PCL}_{5} \rightarrow \underset{\mathrm{CH}_{3}-\stackrel{H}{4}_{i}^{\mathrm{H}}-\mathrm{Cl}^{\circ} \mathrm{Cl}}{\mathrm{Cl}}+2 \mathrm{POCl}_{3}+2 \mathrm{HCl}$ MP3 available for balanced equation with any one -OH replaced by Cl $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{CHClCOOH}+\mathrm{POCl}_{3}+\mathrm{HCl}$ OR $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{PCl}_{5}-\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COCl}+\mathrm{POCl}_{3}+\mathrm{HCl}$ ALLOW $\mathrm{PCl}_{3} \mathrm{O}$ for POCl_{3}		3

Question Number	Acceptable Answers	Reject	Mark
$23 \mathrm{c}(\mathrm{i})$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO} \mathrm{CO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]}$	+ symbol instead of multiply on top line	1
	ALLOW HA and A^{-}for lactic acid and lactate if a key given $\mathrm{H}_{3} \mathrm{O}^{+}$for H^{+} Round brackets instead of square brackets $\mathrm{K}_{\mathrm{a}}=$ $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]$		

Question Number	Acceptable Answers	Reject	Mark
23c(ii)	Data on K_{G} for ethanoic acid OR p K_{G} for both acids must be given Lactic acid is stronger /ethanoic acid is weaker AND EITHER Ethanoic acid has a lower $K_{\mathrm{a}}=1.7 \times 10^{-5} /$ lactic acid has a higher K_{a} than 1.7×10^{-5} OR Ethanoic acid has $\mathrm{p} K_{a}=4.8$ AND lactic acid has $\mathrm{p} K_{\mathrm{a}}=3.86$ IGNORE comments on degree of dissociation of the acids	1	

Question Number	Acceptable Answers	Reject	Mark
23c(iii)	Correct final answer without working scores both calculation marks. $\left[\mathrm{H}^{+}\right]^{2}=2.07 \times 10^{-5}$ OR $\begin{align*} & {\left[\mathrm{H}^{+}\right]=\int(0.150)\left(1.38 \times 10^{-4}\right) / \int\left(2.07 \times 10^{-5}\right) /} \\ & 4.55 \times 10^{-3} \tag{1}\\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.34 \end{align*}$ ALLOW 2.35 from quadratic ALLOW TE on incorrectly evaluated $\left[\mathrm{H}^{+}\right]$as long as final pH < 7 e.g final $\mathrm{pH}=2.80$, if Ka for ethanoic acid used scores 1 mark for the calculation. Assumption 1 $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]$ OR H^{+}is only from acid / no H^{+}from ionization of water Assumption 2 Ionization of the (weak) acid is negligible/ very small/ insignificant OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {initial }}-x=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {eqm }}$ ALLOW i for initial OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {initial }}=\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {eqm }}$ OR $\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]_{\text {eqm }}=0.150\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ OR $\left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}]$	[H^{+}] based on [acid] = [salt] (giving pH = 3.86) for both marks 2.3 Just "ionisation is negligible" without reference to a compound	4

Question Number	Acceptable Answers	Reject	Mark
23c(iv)	Correct final answer = 4 marks		4
	NB Rounding [lactate] to 0.21 moles gives mass $=$ $23.52(\mathrm{~g})$, which also scores 4 marks		
	Method 1		
	$\left[\mathrm{H}^{+}\right]$in buffer $=1 \times 10^{-4}$		
	$\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}\right]=\frac{\mathrm{K}_{a} \times\left[\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}\right]}{\left[\mathrm{H}^{+}\right]}$		
	$=\frac{\left(1.38 \times 10^{-4}\right) \times(0.150)}{1 \times 10^{-4}}$		
	Rearrangement of equation to find [lactate] $\begin{equation*} \text { [lactate] }=0.207\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$		
	```Mass required = 0.207 x 112=23.184=23.2(g) Ignore sf except 1 sf ALLOW TE on incorrectly calculated [lactate]None```	16.8 (g) because this is $0.15 \times 112$	
	Method 2		
	$\mathrm{p} K=\mathrm{pH}-\log [\mathrm{salt}] /[\mathrm{acid}]$		
	$\begin{align*} & \text { OR } \\ & 3.86=4.00-\log [\text { salt }] /[\text { acid }] \tag{1} \end{align*}$		
	$-\log [$ salt $] /[$ acid] $=0.14$		
	$\begin{array}{\|l} {[\text { salt }] /[\text { acid }]=1.38} \\ \text { OR [acid] } /[\text { salt }]=0.72 \tag{1} \end{array}$		
	$\begin{equation*} \text { [salt] }=(1.38 \times 0.15)=0.207\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$		
	Mass required $=0.207 \times 112=23.184=23.2(\mathrm{~g})$ Ignore sf except 1 sf	If clearly not [lactate] calculated, but [lactic acid], $\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}^{+}\right]$	


Question Number	Acceptable Answers	Reject	Mark
*23c(v)	IGNORE discussion of buffer reaction with lactic acid and hydroxide ions   (large) reservoir of lactate ions (to combine with hydrogen ions)   ALLOW   "(large) reservoir of conjugate base /salt" if lactate ions shown in equation $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH} \tag{1} \end{equation*}$   Ratio of undissociated lactic acid : lactate is relatively unchanged OR   Ratio of undissociated acid: (conjugate) base /   salt is relatively unchanged	"reservoir of sodium lactate"   Equation with sodium lactate   Reaction reversed showing lactic acid dissociation	3


Question   Number	Acceptable Answers	Reject	Mark
$24 a(i)$	$K_{c}=\frac{\left[\mathrm{NO}^{2}[\mathrm{Cl} 2]\right.}{[\mathrm{NOCl}]^{2}}$	Partial pressures   Round brackets in   place of square   brackets   IGNORE   State symbols   multiply on top line	1


Question Number	Acceptable Answers	Reject	Mark
*24a(ii)	MARK CONSEQUENTIALLY ON EXPRESSION IN (i)   This may be shown as mols at eqm $\div 5$ in $K_{\mathcal{c}}$ expression $\begin{equation*} K_{\mathrm{c}}=\frac{\left((0.044)^{2} \times(0.022)\right)}{(0.356)^{2}}=3.36 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{equation*}$   Value   IGNORE sf except 1sf   Units   Mark independently, consistent with Kc expression in (i)   Correct final answer without working scores 4 marks		4


Question   Number	Acceptable Answers	Reject	Mark
*24a(iii)	K is the same as ...   EITHER   ...temperature is unchanged   OR   ...it is unaffected by change is to volume / pressure / (1)   concentration	2	
More NO (and Cl 2 ) is formed because the quotient of   the $K_{c}$ expression decreases to keep Kc constant   ALLOW   More NO (and Cl2) forms because the pressure is   reduced, so the reaction goes to the side with more   (gas) moles   OR   More NO (and Cl2) forms because the pressure is   reduced, so the reaction goes to the right			



Question Number	Acceptable Answers	Reject	Mark
24b(ii)	Final answer of $\Delta H=(+) 77(.0) \mathrm{kJ} \mathrm{mol}^{-1}$ scores 2   First mark : $\Delta H=(2 \times 90.2)-(2 \times 51.7)$   OR   Hess cycle $\begin{equation*} \Delta H=(+) 77(.0)\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$   IGNORE   Units   ALLOW   Max (1) TE for using a value other than 0 for $\mathrm{Cl}_{2}$		2


Question Number	Acceptable Answers	Reject	Mark
24b(iii)	$\Delta S_{\text {Surroundings }}=-\Delta H / T$   ALLOW $\Delta \mathrm{S}=-\Delta H / T$ as long as there is reference to surroundings subsequently   (As $\Delta H$ is positive), when $T$ increases, $\Delta S_{\text {surroundings }}$ becomes less negative (so $\Delta$ Sotal becomes less negative)   IGNORE "smaller" and "decreasing" for less negative   No TE for MP2 if answer to (ii) is negative		2


Question   Number	Acceptable Answers	Reject	Mark
$24 \mathrm{~b}(\mathrm{iv})$	$\Delta S_{\text {total) }}=\mathrm{R} \ln K$	$(1)$	
	IGNORE $K_{c} / K_{p}$		2
	Kincreases as T increases because     ElTHER    $\Delta S_{\text {total }}$ increases (as T increases)    OR    Equilibrium moves to the right (as T increases) (1)		


Question   Number	Acceptable Answers	Reject	Mark
24c(i)	2nd mark dependent on 1st, for both methods.    EITHER    (Kinetic) energy of each particle is greater (1)   ALLOW "substances" for "particles"   So more ways of arranging particles or quanta /   more disorder/ more random movement (at (1)   higher T) Answers discussing   entropy change, not   entropy   IGNORE More collisions 2   OR At the higher temperature the Maxwell-   Boltzmann curve is more spread out   So there is greater randomness in the distribution   of energies/ speeds		

FOR 24c(ii) and 24c(iii): if $\mathrm{mol}^{-1}$ is written as mol-, only penalise once

Question Number	Acceptable Answers	Reject	Mark
24c(ii)	$\begin{align*} & +40.7 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \text { scores } 2 \text { marks } \\ & \Delta S_{\text {ys }}=(189.3+2(231.2)-2(305.5)) \tag{1} \end{align*}$   Magnitude, sign and units   No TE on incorrect expression   ALLOW   $+63 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ for 1 mark due to using data at 298K		2


Question Number	Acceptable Answers	Reject	Mark
24c(iii)	Method 1   $\Delta S_{\text {urr }}=-\Delta H / T$   or use of expression e.g. -53.2 $\times 1000 / 800$   Value of $\Delta S_{\text {surr }}$ with sign and unit (-66.5 $\left.\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1} /-0.0665 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$   OR   Value of $\Delta S_{\text {otal }}$ with sign and unit   (-66.5 + 40.7   $\left.=-25.8 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} /-0.0258 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$   $\Delta S_{\text {otal }}$ negative so not spontaneous   ALLOW   TE on incorrect $\Delta$ Svalues in (ii) and (iii) If this gives a positive value for $\Delta$ Sotal , then spontaneous   Method 2   When $\Delta$ Sotal $=0$, then $T \Delta S_{\text {system }}=\Delta H$ $\begin{equation*} \mathrm{T}=\Delta H / \Delta S_{\text {ystem }}=53200 / 40.7=1307 \mathrm{~K} \tag{1} \end{equation*}$   At $\mathrm{T}<1307 \mathrm{~K}$ reaction is not spontaneous   Method 3 $\begin{align*} & \Delta G=53200-800 \times 40.7 / \\ & =53.2-800 \times(40.7 / 1000)  \tag{1}\\ & =+20640 \mathrm{~J} \mathrm{~mol}^{-1} /+20.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1} \end{align*}$   $\Delta G$ positive so reaction is not spontaneous		3

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

